
www.manaraa.com

An Examination of Some Software
Development Effort and Productivity
Determinants in ICASE Tool Projects

GIRISH H. SUBRAMANL\N AND GEORGE E. ZARNICH

GiRiSH H. SUBRAMANIAN has a Ph.D. in computer and infonnation science from
Temple University. He is currently Assistant Professor of Infonnation Systems at the
School of Business in Penn State, Harrisburg. His research interests include software
engineering, software cost estimation, CASE technology, information technology
adoption, and the strategic value of information systems. He has publications in
Communications of the ACM. Decision Sciences,\he Journal of Systems and Software,
and Journal of Computer Information Systems.

GEORGE E. ZARNICH received a B.S. degree in computer science from Edinboro
University and a M.B.A. from Pennsylvania State University at Harrisburg. He is
currently a senior consultant with Technology Solutions Company. Previously, he was
a systems engineer with Electronic Data Systems.

ABSTRACT: Integrated computer-aided software engineering (ICASE) tools and their
effect on software development effort and productivity have gained interest in recent
research. This research studies the applicability of fiinction points and technical
complexity factor as software development effort estimators for ICASE projects. In
addition, the effect of three factors—^ICASE tool type, systems development method,
and ICASE tool experience—on software development productivity is studied.
ICASE-based software projects from Texas Instruments and Electronic Data Systems
were used in this empirical research. Function points accounted for 74 to 82 percent
ofthe variance in software development effort. Technical complexity factor, however,
had only a small indirect effect on software effort. While software productivity
differences between the ICASE tool types could not be confumed, productivity was
significantly higher for the rapid application development method in comparison with
the productivity associated with the traditional systems development life cycle
method. Higher levels of ICASE tool experience were associated with significant
increases in software productivity.

KEY WORDS AND PHRASES: ftinction points, integrated CASE tools, rapid application
development, software development effort estimation, systems development method.

FUNCTION POINTS (FP) METHOD [1] CURRENTLY PROVIDES THE ONLY ESTABLISHED

industry standard of software size measurement in the area of systems development
[19]. A high degree of correlation between ftmction points and the work effort involved

Journal of Management Information Systems I Siinn% 1996, Vol. 12, No. 4, pp. 143-160

Copyright © 1996, M.E. Sharpe, Inc.

www.manaraa.com

144 SUBRAMANIAN AND ZARNICH

in developing software was demonstrated in non-CASE software projects [1]. Inter-
rater and intermethod reliability of FP measurement is also shown to be sufficiently
high, justifying its continued use as a measure of software size and as an estimator of
software development effort [18]. The applicability of FP method as a software
development effort estimator in the context of ICASE-tool-based software develop-
ment is shown in a sample of nineteen software projects [4]. The research in [4]
emphasizes the need for ftjture research to study the applicability of their fmdings with
a larger sample size and in multiple organizations. Hence, this research replicates the
research in [4] by empirically studying the applicability of FP as an effort estimator
in two ICASE environments using a larger sample of forty ICASE projects.

FP is also used to measure software development productivity [3, 4]. Empirical
research presents a systematic productivity measurement model for ICASE tools to
help organizations assess the benefit of CASE tools [3]. An extension to the research
in [3] would be the examination of factors that are claimed to impact software
development productivity for projects using ICASE tools. Tools, methods, and per-
sonnel experience are indicated as variables that influence software development
effort in the systems development eftbrt model [35]. As productivity is defmed in [3]
as a ratio of software effort to software size, these three variables would also impact
software development productivity. Hence, this research studies the effect ofthe type
of ICASE tool, systems development method, and ICASE tool experience on software
productivity.

Texas Instruments' (TI) ICASE tool. Information Engineering Facility (IEF), and
Electronic Data Systems' (EDS) ICASE tool, Integrated CASE (INCASE), are the
two ICASE tools examined for significant productivity differences between them.
Second, the effect of systems development method on software productivity is
examined by comparing productivity differences between projects that used rapid
application development (RAD) and projects that used traditional systems develop-
ment life cycle (SDLC) development. The RAD method [21] is claimed to give much
faster development and higher-quality results. Finally, the effect of different levels of
ICASE tool experience on software productivity is studied.

Review of ICASE Tools and RAD Methodology

THE ICASE TOOL PROVIDES SUPPORT FOR ALL PHASES of the System life cycle. The
ICASE tools ofthe 1990s [9, 10, 11, 30] provide support for:

• Creating a model of user requirements in a graphical form;
• Creating software design models for both the data and the procedural code;
• Error checking, consistency checking, analysis, and cross-referencing of all

system information;
• Building prototypes of systems and enabling a simulation ofthe system;
• Enforcing organizational standards for specification, design, and implementa-

tion activities in the system development life cycle;
• Generating code directly from the design models;

www.manaraa.com

SOFTWARE DEVELOPMENT IN ICASE TOOL PROJECTS 145

• Providing automated support for testing and validation;
• Providing support for reusable software components—in the form of designs,

code modules, and data elements;
• Providing interfaces to external dictionaries and databases;
• Reengineering, restructuring, and reverse engineering of existing systems; and
• Storing, managing, and reporting system-related information and project man-

agement information.

Development in an ICASE tool environment is carried out by people trained to use
modem toolsets, which integrate prototyping, graphical modeling, repositories, testing
tools, and other aspects incorporated in ICASE toolsets [21].

"The best development teams have 10 times the productivity of the average" [21].
A key aspect of RAD is its use of small autonomous (SWAT) teams and joint
application development (JAD) with user involvement in systems development. The
effective use of teams in software development has gained considerable interest in
recent research [15, 26, 33, 37]. JAD involves selected user representatives in a
meeting to define or design an information system [7]. JAD imposes a structure for
the meetings along with a clear agenda. Additional details on JAD are available in [2,
8, 28,32,34].

In SDLC, user specifications are frozen prior to the technical design phase. During
this time, business needs continue to evolve and change while the software application
system is being developed. By the time implementation occurs, the system is very
often outdated or in need of many changes. With RAD, shorter elapsed time between
design and implementation often means the system is much closer to the user/business
needs. Constant involvement by the customers through joint application development
(JAD) sessions provides a much better system in terms of meeting customer needs.

There are basically four essential aspects of fast software development—the tools,
methodology, people, and management [13]. RAD techniques provide for five steps,
including data modeling, prototyping, optimizing, integration, and deploying [5]. By
utilizing the ICASE tools in RAD development, the tools enforce precision in
diagramming data models and fiows. The prototyping has also become an important
part of the RAD development life cycle. The idea of prototyping is to put the basic
system in the user's hands quickly so that the process of refinement can be completed
[14]. The ability of ICASE to generate code, test and modify it quickly, and regenerate
it provides the ability to operate in this prototype-like fashion. Prototyping is the basis
for production, and hence the prototype evolves into the end product. Using these
techniques, phased implementation has become more common. The most obvious
benefit in using RAD is to achieve better-designed software that will require less
maintenance later [12].

Studies by Capers Jones [16] have shown that conventional application development
techniques—that is, structured life cycle with programming productivity aids—yields
productivity in the coding phase of eight to ten function points per person-month. The
goal is to increase productivity to a range of 100 to 150 ftmction points per person-
month [23]. A key challenge in implementing ICASE software is to get developers to

www.manaraa.com

146 SUBRAMANIAN AND ZARNICH

use RAD as a supporting methodology, which adds to the workload up front but saves
time in the long run.

Research Propositions and Data Collection

Applicability of Function Points as Effort Estimator for ICASE Projects

IT IS ARGUED THAT A MEASURE OF THE "FUNCTION" that the software is to perform can
be used to systematically derive an estimate of program size [1]. The FP method is
used for the prediction of program size and, eventually, the software development
effort. The FP method espouses that the function points delivered to the user are:

a. number of external input types;
b. number of external output types;
c. number of master files;
d. number of inquiries; and
e. number of interfaces.

A weighted sum of these factors can be adjusted using the technical complexity
factor (TCF) which is dependent on fourteen variables. The result is the adjusted
function points that is used in software sizing and effort determination. Appendix A
provides a detailed explanation of function points calculation for our study, with an
example. Empirical testing of the function points method demonstrates the superiority
of this approach over an approach based on the size in lines of code [17]. Function
points also can be used in measuring productivity. The adjusted function points
delivered per person-month of work effort is an effective measure of productivity used
for ICASE tools [3,4].

TCF is used as an indirect determinant of effort in the FP method [1]. TCF is used
to adjust FP which has a direct effect on software development effort. Both unadjusted
function points (UFP) and adjusted function points (AFP) are shown to be significant
estimators of sofhvare development effort in nineteen ICASE projects [4]. Hence, we
propose:

Proposition 1: In ICASE-tool-based software development, junction points are a
significant estimator of software development effort.

One could argue that TCF can also have a direct effect as an estimator of effort for
ICASE projects. However, it was shown that in non-CASE environments the impact
of the fourteen complexity factors is small [17], and hence the direct effect may not
be present. The direct effect of TCF as an estimator of effort for ICASE projects,
however, was not studied in [4]. Hence, we propose:

Proposition 2: In ICASE-tool-based software development, TCF is a significant
estimator with a direct effect on software development effort.

www.manaraa.com

SOFTWARE DEVELOPMENT IN ICASE TOOL PROJECTS 147

Software Development Productivity Determinants

The use of ICASE has been shown to increase productivity levels measured in function
points delivered per person-month for First Boston Bank [3]. Other studies also report
productivity improvements through the use of CASE tools [24, 25, 29]. CASE tools
that support the disciplined approach have a better chance at increasing productivity
levels [31]. This research examines the presence of productivity differences between
two similar ICASE tools—^IEF and INCASE—in an attempt to find out the impact of
ICASE tool selection on software productivity. Both ICASE tools provide all
flmctionalities expected from these tools. A detailed description of these two ICASE
tools is provided in appendix B.

The faster development of RAD results in the delivery of more function points per
person-month resulting in higher productivity. The claim of the superiority of the RAD
method to SDLC for ICASE tool projects is empirically verified in this research.

ICASE tool experience is critical in achieving higher productivity. Poor software
productivity is attributed to the absence of CASE tool training for systems personnel
[36]. ICASE users often experience a productivity decrease for the first three to six
months, and it often takes twelve to eighteen months before productivity gains are
visible [20]. It is amply clear from this fmding that a higher level of CASE tool
experience obtained over a longer period of time would result in higher productivity.

The effect of these three factors on software productivity is presented in the software
productivity research model (figure 1). Software productivity is defined as the function
points delivered per person-month and is consistent with its use in [3,4, 16, 23].

From this research model, we propose:

Proposition 3: There are no significant productivity differences between the two
ICASE tools—IEF or INCASE.

Proposition 4: There are no significant productivity differences between RAD
and SDLC methods for ICASE-based software projects.

Proposition 5: There are no significant productivity differences between different
levels of ICASE tool experience.

The data set originally contained 53 projects (19 IEF and 34 INCASE) that were
developed within the last five years. From this set, 40 projects (12 IEF and 28
INCASE) appear in the study since they had complete and accurate information
necessary for further analysis.

The FPs were calculated by the project managers and documented. For the purposes
of this research, the FPs were independently calculated by us for all projects and this
independent FP measurement was used in the study. Our FP calculation agreed quite
closely with the calculations of the project managers. Both organizations have well-
defmed procedures, standards, and quality control steps for calculating FPs and
dociunenting them.

The data set collected includes an assigned project number (1 through 40), tool name
(IEF or INCASE), methodology (RAD or SDLC), tool experience (low, medium, or

www.manaraa.com

148 SUBRAMANIAN AND ZARNICH

ICASE Tools

Systems
Development
Method

Software
Productivity

ICASE Tool
Experience

Figure I. Software Productivity Research Model

high), actual effort in person-months, adjusted function points (AFP), unadjusted
function points (UFP), and technical complexity factor (TCF). Software produc-
tivity measured as the number of function points per person-month (FPMM) is
calculated as AFP divided by effort. The TCF values did not vary much across the
projects (mean = 0.8923; S.D. = 0.1126) which would suggest that the projects
were comparable.

In defining the data, project and tool are self-explanatory. The methodology is
defined as RAD or SDLC. The ICASE tool experience category is broken into three
levels. We chose this three-level classification in consultation with selected project
managers from these organizations. The first level— l̂ow experience—is defined as no
project member has over 1.5 years of experience utilizing the respective ICASE tool.
The third level—high experience—is defined as at least one-half of the project
members have over three years of experience utilizing the respective ICASE tool. The
second level—medium experience—^is determined as the project team falling some-
where between the low and high levels of experience.

Results

THE INTERCORRELATIONS AMONG UNADJUSTED FUNCTION POINTS (UFP), adjusted
function points (AFP), technical complexity factor (TCF), and effort are shown in
Table 1. All correlations in Table 1 were significant at the 0.01 level except the
correlations of TCF with UFP, AFP, and effort. The correlations of UFP with AFP
shown in Table 1 are comparable to the correlation value of 0.981 shown in earlier
research [4, p. 142]. In order to test proposition 1, a regression of effort as the
dependent variable and function points as the independent variable was conducted and
the results are provided in Table 2.

It is amply clear from the R^ values in Table 2 that UFP or AFP or its log
transformations explain about 73 to 82 percent of variance in the dependent variable
effort or its log transformation. Log transformations were used in a recent estimation

www.manaraa.com

SOFTWARE DEVELOPMENT IN ICASE TOOL PROJECTS 149

Table 1. Correlation Results

UFP AFP TCF Effort

UFP

AFP

TCF

Effort

1.000

0.9947

0.2174

0.9519

0.9947

1.000

0.2729

0.9723

0.2174

0.2729

1.000

0.3213

0.9519

0.9723

0.3213

1.000

Table 2. Regression Results of Effort versus Function Points

Indepen-
Dependent dent
variable variable Fvalue Signif. ofF rvalue Signif.

Effort

Effort

Log(effort)

Log(effort)

UFP

AFP

Log (UFP)

Log (AFP)

0.7388

0.7479

0.8105

0.8195

107.5

112.7

162.5

172.6

0.0000

0.0000

0.0000

0.0000

10.37

10.62

12.75

13.14

0.0000

0.0000

0.0000

0.0000

model to "stabilize the error variance while preserving the linearity of the original
relationship" [22], and hence our research results also include log transformations.

Since the research in [22] clearly emphasizes the importance of using scattergrams
in effort estimation, the scatterplots shown in figures 2 and 3 were generated. Figures
2a and 2b show the scattergrams of the regression between log-effort and log-UFP.
Figure 2a shows the scatterplot of both the actual and predicted effort values versus
log-UFP with the associated 95 percent confidence interval. Figure 2b shows the plot
of the studentized residuals versus predicted values. Figures 3a and 3b show the
scattergrams of the regression between log-effort and log-AFP. Figure 3a shows the
scatterplot of both the actual and predicted effort values versus log-AFP with the
associated 95 percent confidence interval. Figure 3b shows the plot of the studentized
residuals versus predicted values. From these figures, it is clear that the regression
assumptions such as homoscedasticity and normality hold good for the regressions of
log-effort versus log-UFP and log-effort versus log-AFP. The similarity of the distri-
bution between the UFP and AFP distribution adds additional support for the compa-
rability of the projects.

Proposition 1 is supported as the Fand rvalues are significant in all the regressions
in Table 2. Hence, function points is a significant estimator of software development
effort for ICASE projects. This result reaffirms the finding in [4] that FP is a significant
estimator of development effort. The UFP and AFP are comparable in their predictive
ability on effort which is similar to the comparable predictive ability of "raw-fimction-
counts and function-points" in [4]. In fact, the R^ values of UFP and AFP with effort
in Table 2 are comparable to the R^ values of 0.75 and 0.76 in earlier research [4, p.
143].

www.manaraa.com

150 SUBRAMANIAN AND ZARNICH

LOG I
6 +

EFF-
ORT

4 +

2 +

0 +

-2 +

-4 +

UU
u u

U A A

B BP
P P

B A A

L LL
L L L

UUU

B P
BP

LAL
L

UU
UU

U A
UU U AAA

UU U APP
U UU A A PB

U U A A P P A
PPP

A PP LL
P BA A T.T.T.

B A L L
A £ L L
L LL

I> L

LOG UFP

Figure 2a. Plot of Predicted versus Actuals for Regression of Effort versus UFP
(A: actual; P: predicted; L: lower 95% confidence level; U: upper 95% confidence level)

ACROSS - PREDICTED DOWN - STUDENTIZED RESIDUALS
OUT ++ H H + + + ++

3 + + SYMBOLS:

2 +

1 +

0 +

-1 +

-2 +

-3 + +
OUT ++ H + + + + ++

- 3 - 2 - 1 0 1 2 3 OUT

MAX N

1.0
2.0
3.0

Figure 2b. Standardized Scatterplot for Regression of Effort versus UFP

www.manaraa.com

SOFTWARE DEVELOPMENT IN ICASE TOOL PROJECTS 151

LOG I
6 +

EFF-
ORT

4 +

2 +

0 +

- 2 +

-4 +

UUU
U

UU
U AAA A P

PPA
APP
P
A A L&&

UU
UUU

U A
UUU A A A

UUU A PPP
UUU AA PPB

U U AAPP P AA
P P P

APP LLL
P PPAA A LLL

P B A LL
A A LLL
LLL

A L
L

B

LL
L L

8

LOG AFP

Figure 3a. Plot of Predicted versus Actuals for Regression of Effort versus AFP
(A: actual; P: predicted; L: lower 95% confidence level; U: upper 95% confidence level)

ACROSS - PREDICTED DOWN - STUDENTIZED RESIDUALS
OUT ++ + + + + + ++

3 + + SYMBOLS:

2 +

1 +

0 +

-1 +

-2 +

-3 + +
OUT ++ + + + + + ++

- 3 - 2 - 1 0 1 2 3

MAX N

1.0
2.0

Figure 3b. Standardized Scatterplot for Regression of Effort versus AFP

www.manaraa.com

152 SUBRAMANIAN AND ZARNICH

Table 3. Regression results of Effort versus TCF and UFP versus TCF

Dependent

variable

Effort

UFP

Log(UFP)

Indepen-

dent

variable

UFP

TCF

TCF

TCF

R^

0.7388

0.0697

0.1337

F value

107.5

Not entered

2.847

5.866

Signif. of F

0.0000

0.0997

0.0203

rvalue

10.37

0.331

-1.69

-2.44

Signif. of r

0.0000

0.7426

0.0997

0.0203

Proposition 2 poses the argument that TCF could also have a direct effect on effort.
Proposition 2 is tested by (a) a stepwise regression of effort with UFP and TCF, and
(b) a regression of UFP and TCF. The results are summarized in Table 3.

TCF was not entered as a significant estimator of effort in the stepwise regression
of effort with UFP and TCF. Hence, TCF does not have a direct effect on effort.
Proposition 2 is not supported as TCF is not a significant estimator of software
development effort. TCF's effect on UFP or Log(UFP) is also small, resulting in a
small indirect effect of TCF on effort. The small indirect effect of TCF is also
confirmed by the small increase in f^ value associated with the regression of effort
and AFP over the P^ value of effort and UFP as shown in Table 2. A possible reason
for this finding could be that TCF did not vary much among the forty projects and
hence would have only a small, indirect effect on effort. It is also argued that the TCF
factors may be less relevant for ICASE projects [4].

Finally, the effect of the two ICASE tools, the RAD method, and ICASE tool
experience on software productivity through oneway analyses of variance (ANOVAs)
are shown in Table 4 and through two factor ANOVAs are shown in Table 5. A
three-factor analysis of variance with twelve cells could not be conducted with a
sample size of 40.

Scheffe's Ttest was used to test the significance of the mean differences and test
propositions 3, 4, and 5. The Scheffe test results are the same for both oneway
ANOVAs (Table 4) and two-factor ANOVAs (Table 5). Significance of the
productivity differences between the two ICASE tools IEF and INCASE could not
be confirmed as we fail to reject proposition 3. The use of RAD method for ICASE
projects does result in a significant increase in software productivity in comparison
to SDLC projects. This result clearly establishes the appropriateness of the RAD
method in ICASE-tool-based development as it holds the key for achieving higher
productivity. Finally, higher levels of software productivity are possible only as
systems personnel gain more years of experience in the ICASE tool as higher levels
of experience result in increased (high > medium > low) productivity. This result
will help organizations develop realistic short-term and long-term expectations on
the impact of ICASE tool on software productivity. As can be seen from Table 5,
the interaction effects are not significant.

www.manaraa.com

SOFTWARE DEVELOPMENT IN ICASE TOOL PROJECTS 153

Table 4. One-Way ANOVA Results

Variable Classification
and

frequency

Mean Standard
deviation

Fvalue Signif.
ofF

Scheffe
rtest

ICASE tool

Systems
development

ICASE tool
experience

IEF (12)
INCASE (28)

SDLC (29)
RAD (11)

Low (25)
Medium (12)
High (3)

60.99
53.29

45.58
82.00

41.79
73.34
99.72

29.36
35.76

28.69
32.98

26.74
34.01
10.90

0.6600

9.780

8.0600

0.4212

0.0034

0.0013

Not
significant

Signif.

Signif.

Table 5. Two-Factor ANOVA Results

Two factors Main Signif of F Scheffe T test Interaction Signif of F

Tooi and Tool
development development

Development Deveiopment
and experience
experience

Experience Experience
and tooi tooi

0.3299 Not signif.
0.0024 Signif.

0.0016 Signif.
0.0151 Signif.

0.0008 Signif.
0.2794 Not signif.

Tool*
development

Deveiopment*
experience

Experience*
tooi

0.0605

0.3796

0.1619

Conclusion

SIZE IS A MAJOR ESTIMATOR OF EFFORT IN NEARLY ALL effort estimation models in
non-CASE environments (e.g., COCOMO [6], ESTDVLACS [27]). FP is shown to have
high correlations with effort for non-CASE projects [1]. The results of this research provide
additional support to the findings in [4] by showing FP to account for 73 to 82 percent of
the variance in effort for forty ICASE projects in two organizations. Hence, this research
and the findings from [4] add additional credibility and value to the task of keeping track
of FPs for ICASE projects as they are good estimators of softwarc development effort.

TCF, however, adds little value to the estimation of effort. TCF does not have a
significant, direct effect as an estimator of effort. It has only a small, indirect effect in
adjusting UFP and influencing effort. Previous empirical research for non-CASE
projects has shown that TCF has only a small impact on software effort [17]. The
fourteen factors that constitute TCF may be less relevant for ICASE environments [4]
and hence TCF may need to be redefined.

While individual examples and claims on the favorable impact of CASE tools on
software productivity exist, research on upper CASE tools did not fmd a significant
impact on software productivity due to the lack of a disciplined approach or trained
personnel [31]. ICASE tools, however, are shown to have a significant effect on
software productivity [3].

www.manaraa.com

154 SUBRAMANIAN AND ZARNICH

The RAD method uses prototyping and small teams to effectively exploit the
automated capabilities of ICASE tools to achieve rapid software development. RAD
method and ICASE tools in conjunction result in productivity levels significantly
greater than the productivity levels obtained from using ICASE tools and an SDLC
method. It is quite possible that RAD is ideally suited for ICASE environments and
results in a significant productivity advantage not possible through the use of SDLC.
Further research is needed to study the advantages of using RAD in ICASE environ-
ments.

Use of an ICASE tool alone would not ensure high software productivity. Trained
personnel are crucial for reaping the benefits of CASE tools [31]. This research has
shown that there are significant productivity differences between different levels (low
< medium < high) of ICASE tool experience. Low ICASE experience results in a
productivity of forty-two FPs per person-month. High ICASE experience, with more
than twice the experience of low ICASE, results in ninety-nine FPs per person-month
which is more than twice the low ICASE productivity. Organizations need to have
realistic short-term and long-term productivity expectations from ICASE tools. Sim-
ilarly, CASE tool vendors need to emphasize in their claims of high productivity from
ICASE tools that these productivity levels are possible only as software personnel gaiti
years of experience in using the ICASE tool.

REFERENCES

1. Albrecht, A.J., and Gaffhey, J.E. Software function, source lines of code, and develop-
ment effort prediction: a software science validation. IEEE Transactions of Software engineer-
ing, 9,6 (November 1983), 639-648.

2. August, J.H. Joint Application Design: The Group Session Approach to Systems Design.
Englewood Cliffs, NJ: Yourdon Press, 1991.

3. Banker, R.D., and Kauffman, R.J. Reuse and productivity in integrated computer-
aided software engineering: an empirical study. MIS Quarterly, 15, 3 (September 1991),
375-^01.

4. Banker, R.D.; Kauffman, R.J.; and Kumar, R. An empirical test of object-based output
measurement metrics in a computer aided software engineering (CASE) environment. Journal
of Management Information Systems, 8, 3 (Winter 1991-92), 127-150.

5. Baum, D. Go totally RAD and build apps faster. Datamation, 38, 19 (September 15,
1992), 79-81.

6. Boehm, B.W. Software engineering economics. IEEE Transactions on Software Engi-
neering, 10,1 (January 1984), 4-21.

7. Carmel, E.; Whitaker, R.; and George, J.F. PD and joint application design: a transatlantic
comparison. Communications of the ACM, 36, 6 (June 1993), 40-48.

8. EDP Analyzer. Developing high quality systems faster. 24,6 (June 1986), 1.
9. Electronic Data Systems. Analysis of system development time using INCASE—rapid

application development. Technical Report, Piano, TX, 1992.
10. Electronic Data Systems. Introduction to integrated CASE. Technical Report, Piano, TX, 1992.
11. Electronic Data Systems. INCASE 11.0—product overview. Technical Report, Piano,

TX, 1992.
12. Fersko-Weiss, H. CASE tools for designing your applications. PC Magazine, 9, 2

(January 30,1990), 213-251.
13. Foss, W.B. Fast, faster, fastest development Computerworld, 27,22 (May 31,1993), 81-83.
14. Gremillion, L.L., and Pybum, P. Breaking the systems development bottleneck. Harvard

Business Review, 61,2 (March-April 1983), 130-137.

www.manaraa.com

SOFTWARE DEVELOPMENT IN ICASE TOOL PROJECTS 155

15. Hyman, R. Creative chaos in high-performance teams: an experience report. Communi-
cations ofthe ACM. 36,10 (October 1993), 56-61.

16. Jones, C. Programming Productivity. New York: McGraw-Hill, 1986.
17. Kemerer, C.F. An empirical validation of sofhvare cost estimation models. Communica-

tions ofthe ACM. 30,5 (May 1987), 416-429.
18. Kemerer, C.F. Reliability of function points measurement: a field experiment. Commun-

ications ofthe ACM. 36,2 (February 1993), 85-97.
19. Kemerer, C.F., and Porter, B.S. Improving the reliability of function point measurement: an

empiricalstady. IEEE Transactions on Software Engineering. 18,\l (November 1992), 1011—1024.
20. Keyes, J. Gather a baseline to assess CASE impact. Software Magazine. 10, \0 (August

1990), 30-43.
21. Martin, J. Rapid Application Development. New York: Macmillan, 1991.
22. Matson, J.E.; Barrett, B.E.; and Mellichamp, J.M. Software developmentcost estimation using

function points. IEEE Transactions on Software Engineering. 20,4 (April 1994), 275-287.
23. Mimno, P. RAD: the enabling technologies. CASE Trends. 2,3 (May-June 1991), 20-25.
24. Necco, C ; Tsai, N.W.; and Holgeson, K.W. Current usage of CASE software. Journal

of Systems Management. 40, 5 (May 1989), 33-37.
25. Norman, R.J., and Nunamaker, J.F. CASE productivity perceptions of software engineer-

ing professionals. Communications ofthe ACM. 32,9 (September 1989), 1102-1108.
26. Rettig, M., and Simmons, G. A project planning and development process for small

teams. Communications ofthe ACM. 36,10 (October 1993), 44-57.
27. Rubin, H.A. Macroestimation of software development parameters: the ESTIMACS

systems. In SOFTAIR Conference on Sofhvare Development Tools. Techniques, and Altema-
tives, Arlington, VA. New York: IEEE Press, July 1983, pp. 109-118.

28. Rush, G. A fast way to define system requirements. Computerworld. 19,40 (October 7,
1985), 11-12.

29. Swanson, K.; McComb, D.; Smith, J.; and McCubbrey, D. The application software
factory: applying total quality techniques to systems development. MIS Quarterly. 15, 4
(December 1991), 567-579.

30. Texas Instruments. IEF technical description—methodology and technical overview.
Technical Report, Dallas, TX, 1992.

31. Vessey, 1.; Jarvenpaa, S.L.; and Tractinsky, N. Evaluation of vendor products: CASE
tools as methodology companions. Communications ofthe ACM. 35,4 (April 1992), 90-105.

32. Whitaker, R.; Essler U.; and Oestberg, O. Participatory business modeling. Lulea
Technical University (Sweden) Report, 1991.

33. Walz, D.B.; Elam, J.J.; and Curtis, B. Inside a software design team: knowledge acquisition,
sharing, and integration. Communications ofthe ACM. 36,10 (October 1993), 62-77.

34. Wood, J., and Silver, D. Joint Application Design: How to Design Quality Systems in
40% Less Time. New York: Wiley, 1989.

35. Wrigley, CD., and Dexter, A.S. A model for measuring information system size. MIS
Quarterly. 15,2 (June 1991), 245-257.

36. Yourdon, E. The Decline and Fall ofthe American Programmer. Englewood Cliffs, NJ:
Prentice-Hall, 1988.

37. Zultner, R.E. TQM for technical teams. Communications ofthe ACM. 36, 10 (October
1993), 78-91.

APPENDIX A: Function Points Calculation with an Example

A. Count and Classify Five User Function Types.

1. Extemal Input Types
• Transactions from the user;
• Transactions from other applications;
• Data and Control Input Types;

www.manaraa.com

156 SUBRAMANIAN AND ZARNICH

Classification:
Low Few data-element types.

Few intemal-file types referenced.
Human factoring not a major concern of the input type.

High Many data-element types.
Many internal-file types referenced.
Human factoring considerations significantly affect
design of input type.

Medium Between high and low.

2. Extemal Output Types
• Transactions to the user;
• Transactions to other applications;
• Data and Control Output Types;

Classification:
Low Few data-element types.

Few intemal-file types referenced.
Human factoring not a major concern of the output type.

High Many data-element types.
Many intemal-file types referenced.
Human factoring considerations significantly affect
design of output type.

Medium Between high and low.
For Reports:

Low One or two columns.
Simple data transformation.

High Multiple and intricate data-elements.
Multiple and complex file references.

Medium Multiple columns with subtotals.
Multiple data-element transformations.

3. Logical Intemal File Types (Master Files)
• Each logical file within a database;
• Each logical group of data from the viewpoint of the user;

Classification:
Low Few record types.

Few data-element types.
No significant perfonnance or recovery considerations.

High Many record types.
Many data-element types.
Perfonnance and recovery are significant considerations.

Medium Between high and low.

4. Extemal File Types (Interfaces)
• Each Input File Type;

www.manaraa.com

SOFTWARE DEVELOPMENT IN ICASE TOOL PROJECTS 157

• Each Output File Type;
• Data and Control Information;

Classification:
Low Few record types.

Few data-element types.
No significant performance or recovery considerations.

High Many record types.
Many data-element types.
Perfonnance and recovery are significant considerations.

Medium Between High and Low.

5. Query Types
• Queries from the user;
• Queries from other applications;

Classification:
Low Few data-element types.

Few intemal-file types referenced.
Human factoring is not a major concem.

High Many data-element types.
Many intemal file-types are referenced.
Human-factoring considerations significantly affect
the design ofthe query.

Medium Between high and low.
For Reports:

Low One or two columns.
Simple data transformation.

High Multiple and intricate data transformations.
Multiple and complex file references.

Medium Multiple columns with subtotals.
Multiple data-element transformations.

B. Calculate Unadjusted Functioti Points (UFP)

Low Medium High Total

External input
External output
Log. Internal file
External file
Query

X*3 +
X*4 +
X*7 +
X*5 +
X*3 +

Totai unadjusted function points:

X*4 +
X*5 +
X*10 +
X*7 +
X*4 +

X*6 =
X*7 =
X*15 =
X*10 =
X*6 =

999999
999999
999999
999999
999999

999999

C. Calculate Technical Complexity Factor (TCF)

Fourteen technical factors: data communications, online update distributed functions,
complex processing, performance, reusability, heavily used configuration, installation

www.manaraa.com

158 SUBRAMANIAN AND ZARNICH

ease, transaction rate, operational ease, online data entry, multiple sites, end-user
efficiency, and facilitate change.

Degree of Influence Factor Weights:

0 Factor not present
1 Insignificant influence
2 Moderate hifluence
3 Average influence
4 Significant influence
5 Strong influence throughout

TCF = 0.65 + (0.01 * sum of degree of influence factor weights for the fourteen
factors).

D. Calculate Adjusted Function Points (AFP)

AFP = UFP * TCF.

An Example for Calculating Function Points: Truck and Bus/Request
Tracking System.

A, B. Count and classify user types; calculate unadjusted function points.

Project Low Medium High Total

External input
External output
Log. internal file
External file
Query

0*3 +
0*4 +
0*7 +
0*5 +
3*3 +

Total unadjusted function points:

1
0
0
1
8

*4 +
*5 +
*10 +
*7 +
*4 +

3
1
1
1
3

*6
*7
*15 =
*10 =
*6

22
7
15
17
59

120

C. Calculate TCF.

Datacoaimunications 4 Online update 3
Distributed functions 4 Complex processing 3
Performance 3 Reusability 3
Heavily used configuration 4 Installation ease 2
Transaction rate 3 Operational ease 4
Online data entry 2 Multiple sites 4
End-user efficiency 3 Facilitate change 1

TCF = 0.65 + (0.01 * sum of degree of influence factor weights); TCF = 0.65 + 0.01
•43 = 1.08.

D. Calculate adjusted function points (AFP).
AFP = UFP * TCF = 120 * 1.08 = 129.6.

www.manaraa.com

SOFTWARE DEVELOPMENT IN ICASE TOOL PROJECTS 159

APPENDIX B : Description of ICASE Tools Used in Research Study

This research investigation chose software development projects that used the Infor-
mation Engineering Facility (IEF) integrated CASE tool from Texas Instruments or
the Integrated CASE (INCASE) from Electronic Data Systems. The IEF software
provides automated support through a set of tightly integrated tools. The IEF product
supports software development through planning, analysis, design, and construction
toolsets. IEF is widely recognized by industry analysts as one of the leading application
development solutions on the market today. Texas Instruments can claim as users of
IEF companies such as Coca-Cola, Sony, American Airlines, and EDS. Testimonials
of the IEF product have been received from Xerox for the development of a logistics
system, and Canadian Airlines for their frequent flier program software.

The Information Engineering Facility (IEF) toolsets are available on a variety of
workstations and can generate systems to run on multiple platforms ranging from
workstations to mainframes. IEF generates applications based on analysis and design
level diagrams allowing users to separate themselves from the specifics of the
computer environment. For example, an analyst does not necessarily have to know
the programming language "C" to generate and port an application to a customer's
machine. As business or technological conditions change, users can easily redistribute
tasks or regenerate software for new platforms. Another benefit of IEF is the ability
to clearly define relationships between diagrams and objects. IEF provides the ability
of the software to enforce integrity constraints on the developing system. IEF looks
at a business model from five different layers.

1. The architectural layer is a high-level, broad view of the organization to be
automated. It consists of three interlocking architectures that form a high-
level blueprint for meeting the organization's goals and objectives.

2. The conceptual layer is a model of the data relationships, activities, and
business rules on which the systems will be based. This model subdivides
the concepts introduced at the first layer into subordinate pieces and
describes them in much more detail.

3. The external layer is a model of system behavior as experienced by an end
user of the system. It contains specialized information about the conceptual
layer of particular interest to users, such as screen layouts and function key
assignments.

4. The implementation layer is a specialization of the external layer. It maps
the external details about the system to a specific computer hardware and
software environment.

5. The last level, the execution layer consists of data bases and applications
executing on specific computing equipment. This layer becomes the reality
of the model that stands above it [30].

The importance of the ICASE tool as a strategic advantage in application software
development has been recognized by EDS corporate executives. This can be exem-
plified through the alliance with Amdahl Corporation to form the EDS/Anteres

www.manaraa.com

160 SUBRAMANIAN AND ZARNICH

Alliance. Previously, the INCASE product suffered from a corporate neglect that had
allowed the product to fall behind its primary competitor IEF. The renewed emphasis
on updating the product and making it competitive displays the importance of ICASE
product for EDS in achieving and maintaining a strategic advantage [9,10,11].

The technical similarities between the two products (IEF and INCASE) are remark-
able. As with IEF, INCASE also provides for a multilevel approach to application
software development. The primary difference between the products is that at the time
of this writing, INCASE does not support a graphical user interface (GUI) capability.
This restriction severely handicaps the INCASE product as nearly all user-friendly
environments now incorporate GUI in application software development. This GUI
feature is currently under development within the EDS/Anteres Alliance. The primary
features of the INCASE product are the full system life cycle coverage, reusable code
hierarchy, and its integrated documentation facility. The INCASE software runs on a
high-end 486 PC or Sun Sparc 10 workstation under the Unix operating system.
Generated code and applications can be ported to numerous environments as with IEF.
Provided all necessary system networking has been set up, multiple users can have the
ability to work within the same project in the ICASE environment. The experiences
of the INCASE tool have been primarily contained within internal EDS corporate
applications, and General Motors applications (EDS's parent corporation). Applica-
tions range from inventory systems to corporate job posting and training systems.

www.manaraa.com

